Almost Gorenstein Rees algebras

based on the works jointly with

Shiro Goto, Naoyuki Matsuoka, and Ken-ichi Yoshida

Naoki Endo (Waseda University)

The 8th China-Japan-Korea International Symposium on Ring Theory

August 27, 2019

Naoki Endo

Almost Gorenstein Rees algebras

August 27, 2019 1/17

- (同) - (同) - (同) - (同) - (同) - (同) - (回) - (回) - (回) - (回) - (回) - (回) - (回) - (回) - (回) - ((u) - (

What is the Rees algebra?

• For a commutative ring R and an ideal I in R, set

$$\mathcal{R}(I) = \mathcal{R}[It] = \sum_{n \ge 0} I^n t^n \subseteq \mathcal{R}[t]$$

$$G(I) = \mathcal{R}(I)/I\mathcal{R}(I) = \bigoplus_{n>0} I^n/I^{n+1}$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

э

Example 1.1

Let
$$R = k[X_1, X_2, ..., X_d]$$
 $(d \ge 1)$ and $I = (X_1, X_2, ..., X_d)$. Then
 $\mathcal{R}(I) \cong k[X_1, X_2, ..., X_d, Y_1, Y_2, ..., Y_d] / I_2 \begin{pmatrix} X_1 & X_2 & ... & X_d \\ Y_1 & Y_2 & ... & Y_d \end{pmatrix}$

More generally, if

then

$$\mathcal{R}(Q) \cong \mathcal{R}[Y_1, Y_2, \dots, Y_d] / \mathrm{I}_2 \begin{pmatrix} a_1 & a_2 & \cdots & a_d \\ Y_1 & Y_2 & \cdots & Y_d \end{pmatrix}$$

is a CM ring, where $d = \dim R$.

э

▲御▶ ▲臣▶ ▲臣▶

Preceding results

Theorem 1.2 (Goto-Shimoda)

Let (R, \mathfrak{m}) be a CM local ring with $d = \dim R \ge 1$, $\sqrt{I} = \mathfrak{m}$. Then

 $\mathcal{R}(I)$ is a CM ring $\iff G(I)$ is a CM ring, a(G(I)) < 0

where

$$\mathrm{a}(G(I)) = \sup\{n \in \mathbb{Z} \mid \left[\mathsf{H}^d_M(G(I))\right]_n \neq (0)\}, \ M = \mathfrak{m}\mathcal{R}(I) + \mathcal{R}(I)_+.$$

Example 1.3

Let (R, \mathfrak{m}) be a RLR with dim R = 2, I an ideal of R s.t. $I = \overline{I}$ and $\sqrt{I} = \mathfrak{m}$. Then $\mathcal{R}(I)$ is a CM ring.

< □ > < 同 >

 Theorem 1.4 (Goto-Nishida, Goto-Shimoda, Ikeda) Let (R, \mathfrak{m}) be a CM local ring with $d = \dim R \ge 2$, $\sqrt{I} = \mathfrak{m}$. Then $\mathcal{R}(I)$ is Gorenstein $\iff G(I)$ is Gorenstein, $\mathfrak{a}(G(I)) = -2$. When this is the case, R is a Gorenstein ring.

Thus, if R is a CM local ring with dim $R \ge 2$, Q is a parameter ideal, then

 $\mathcal{R}(Q)$ is Gorenstein $\iff R$ is Gorenstein, dim R = 2.

Moreover, if (R, \mathfrak{m}) is a RLR with dim R = 2 and $I = \mathfrak{m}^{\ell}$ $(\ell \ge 1)$, then

$$\mathcal{R}(I)$$
 is Gorenstein $\iff I = \mathfrak{m}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Question 1.5 When is the Rees algebra $\mathcal{R}(I)$ almost Gorenstein?

- *I* is the ideal generated by a (sub) system of parameters
- $I = \overline{I}$ in a two-dimensional RLR

▲□ ▶ ▲ □ ▶ ▲ □ ▶

What is an almost Gorenstein ring?

- In 1997, Barucci and Fröberg defined the notion of almost Gorenstein rings for one-dimensional analytically unramified local rings.
- In 2013, Goto, Matsuoka, and Phuong generalized the notion to arbitrary one-dimensional CM local rings.
- In 2015, Goto, Takahashi, and Taniguchi gave the notion of almost Gorenstein local/graded rings of arbitrary dimension.

< 回 > < 回 > < 回

Survey on AG rings

- (R,\mathfrak{m}) a CM local ring with $d = \dim R$, $|R/\mathfrak{m}| = \infty$
- \exists K_R the canonical module of R.

Definition 2.1

We say that R is an <u>almost Gorenstein local ring</u> (abbr. AGL ring), if \exists an exact sequence

$$0
ightarrow R
ightarrow {\sf K}_R
ightarrow C
ightarrow 0$$

of *R*-modules s.t. $\mu_R(C) = e(C)$

where

$$\mathsf{e}(C) = \lim_{n \to \infty} (d-1)! \cdot \frac{\ell_R(C/\mathfrak{m}^{n+1}C)}{n^{d-1}}.$$

If $C \neq (0)$, then C is CM and dim_R C = d - 1. Besides

 $\mu_R(C) = e(C) \iff \mathfrak{m}C = (f_2, f_3, \dots, f_d)C$

for $\exists f_2, f_3, \ldots, f_d \in \mathfrak{m}$. Hence *C* is an Ulrich *R*-module.

Example 2.2

- $k[[t^3, t^4, t^5]].$
- $k[[X, Y, Z]]/(X, Y) \cap (Y, Z) \cap (Z, X).$
- $k[[t^3, t^4, t^5]] \ltimes (t^3, t^4, t^5).$
- $k[[t^3, t^4, t^5]] \times_k k[[t^3, t^4, t^5]].$
- 1-dimensional finite CM-representation type.
- 2-dimensional rational singularity.

イロト 不得 とくほ とくほ とうほう

- $R = \bigoplus_{n \ge 0} R_n$ a CM graded ring, $d = \dim R$, $\exists K_R$
- (R_0,\mathfrak{m}) a local ring, $|R_0/\mathfrak{m}| = \infty$

Definition 2.3

We say that *R* is an <u>almost Gorenstein graded ring</u> (abbr. AGG ring), if

$$\exists \quad 0 o R o {\sf K}_R(-{\sf a}) o C o 0$$

of graded *R*-modules s.t. $\mu_R(C) = e(C)$

where a = a(R), $M = \mathfrak{m}R + R_+$.

- R is an AGG ring \implies R_M is an AGL ring.
- The converse is not true in general.

くロ とくぼ とくほ とくほ とうしょ

Example 2.4 Let $S = k[X_{ij} | 1 \le i \le m, 1 \le j \le n]$ ($2 \le m \le n$) and set $R = S/I_t(X)$

where $2 \le t \le m$, $X = [X_{ij}]$. Then

R is an AGG ring $\iff m = n$, or $m \neq n$ and t = m = 2.

Example 2.5

- Let $R = k[X_1, X_2, \dots, X_d]$ $(d \ge 1)$ and $1 \le n \in \mathbb{Z}$. Then
 - If $d \leq 2$, then $R^{(n)} = k[R_n]$ is an AGG ring.
 - If $d \ge 3$, then $R^{(n)}$ is an AGG ring $\iff n \mid d$, or d = 3 and n = 2.

- 3

ヘロマ ヘビマ ヘビマ

Main results (parameter ideals)

Let

- (R, \mathfrak{m}) a CM local ring with $d = \dim R \ge 3$
- $a_1, a_2, \ldots, a_r \in \mathfrak{m}$ a subsystem of parameters in $R \ (r \geq 3)$

•
$$Q = (a_1, a_2, \ldots, a_r)$$

•
$$\mathcal{R} = \mathcal{R}(Q) = R[Qt] \subseteq R[t], \ M = \mathfrak{m}\mathcal{R} + \mathcal{R}_+$$

Then

•
$$\mathcal{R} \cong R[X_1, X_2, \dots, X_r] / I_2 \begin{pmatrix} X_1 & X_2 & \dots & X_r \\ a_1 & a_2 & \dots & a_r \end{pmatrix}$$
 is a CM ring.

• dim $\mathcal{R} = d + 1$ and $a(\mathcal{R}) = -1$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Theorem 3.1

- \mathcal{R} is an AGG ring \iff R is a RLR and a_1, a_2, \dots, a_r is a regular system of parameters in R
- \mathcal{R}_M is an AGL ring \iff R is a RLR

Key for the proof

- The Eagon-Northcott complex
- Proposition 3.2

3

• E • • E • ...

Proposition 3.2

Let (B, \mathfrak{n}) be a Gorenstein local ring, I an ideal of B. Suppose that A = B/I is a non-Gorenstein AGL ring. If $pd_B A < \infty$, then B is a RLR.

<u>Proof</u>. May assume $|B/\mathfrak{n}| = \infty$. Choose an exact sequence

$$0 \rightarrow A \rightarrow \mathsf{K}_A \rightarrow C \rightarrow 0$$

s.t. *C* is an Ulrich *A*-module. Then $pd_B C < \infty$. Take an *A*-regular sequence $f_1, f_2, \ldots, f_{d-1} \in \mathfrak{n}$ s.t.

$$\mathfrak{n} C = (f_1, f_2, \ldots, f_{d-1}) C$$

where $d = \dim A$. Set $q = (f_1, f_2, \dots, f_{d-1})$. Since f_1, f_2, \dots, f_{d-1} is a regular sequence on C, $pd_B C/qC < \infty$. Hence B is a RLR, because C/qC = C/nC is a vector space over B/n.

イロト イポト イヨト イヨト 三日

Main results (integrally closed ideals)

Let

- (R, \mathfrak{m}) be a Gorenstein local ring with dim R = 2
- I an \mathfrak{m} -primary ideal in R
- I contains a parameter ideal Q s.t. $I^2 = QI$

•
$$J = Q : I$$

Proposition 3.3

Suppose that $\exists f \in \mathfrak{m}, g \in I$, and $h \in J$ s.t.

IJ = gJ + Ih and $\mathfrak{m}J = fJ + \mathfrak{m}h$.

Then $\mathcal{R}(I)$ is an AGG ring.

Theorem 3.4

Let (R, \mathfrak{m}) be a two-dimensional RLR with $|R/\mathfrak{m}| = \infty$, and $I = \overline{I}$. Then $\mathcal{R}(I)$ is an AGG ring.

Corollary 3.5

Let (R, \mathfrak{m}) be a two-dimensional RLR with $|R/\mathfrak{m}| = \infty$. Then $\mathcal{R}(\mathfrak{m}^{\ell})$ is an AGG ring for $\forall \ell > 0$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Thank you for your attention.

3

イロト イヨト イヨト